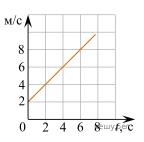
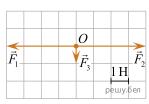

Вариант № 25310

Централизованное тестирование по физике, 2023

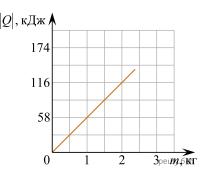
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4 ± 0,2) Н записывайте следующим образом: 1,40,2.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Цена деления шкалы мензурки, изображённой на рисунке, равна:


- 1) $\frac{1 \text{ MJ}}{\text{дел.}}$; 2) $\frac{5 \text{ MJ}}{\text{дел.}}$; 3) $\frac{10 \text{ MJ}}{\text{дел.}}$; 4) $\frac{20 \text{ MJ}}{\text{дел.}}$; 5) $\frac{30 \text{ MJ}}{\text{дел.}}$.

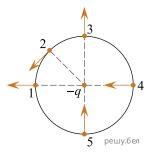
2. На рисунке представлен график зависимости проекции скорости v_x автомобиля, который движется v_x , м/с вдоль оси Ox, от времени t. Проекция ускорения a_r автомобиля на эту ось равна:



- 1) $1 \frac{M}{c^2}$; 2) $2 \frac{M}{c^2}$; 3) $4 \frac{M}{c^2}$; 4) $6 \frac{M}{c^2}$; 5) $8 \frac{M}{c^2}$.

3. На материальную точку O действуют три силы: \vec{F}_1 , \vec{F}_2 , \vec{F}_3 (см. рис.), лежащие в плоскости рисунка. Модуль равнодействующей сил, приложенных к данной материальной точке, равен:

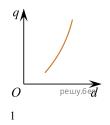
- 1) 9 H:
 - 2) 4 H: 3) $3\sqrt{2}$ H:
- 4) 3 H:
- 5) 1 H.
- 4. Выберите процессы, в которых сила давления идеального газа совершает положительную работу:
 - 1) изобарное сжатие газа:
- 2) изобарное нагревание газа;
- 3) изохорное нагревание газа;
- 4) изохорное охлаждение газа;
- 5) изотермическое расширение газа.
- 5. На рисунке представлен график зависимости количества теплоты, выделяющегося при конденсации пара некоторого вещества, находящегося при температуре кипения, от его массы. Удельная теплота парообразования L этого вещества равна:

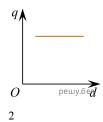


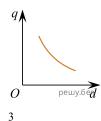
- 1) 29 $\frac{\kappa \angle J \times \kappa}{\kappa \Gamma}$; 2) 58 $\frac{\kappa \angle J \times \kappa}{\kappa \Gamma}$; 3) 116 $\frac{\kappa \angle J \times \kappa}{\kappa \Gamma}$; 4) 174 $\frac{\kappa \angle J \times \kappa}{\kappa \Gamma}$;
 - - 5) 300 кДж.

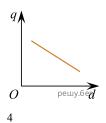
4) 6
$$\frac{M}{c^2}$$

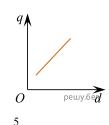
5)
$$8 \frac{M}{c^2}$$

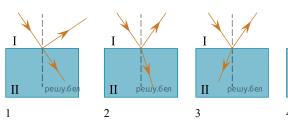

6. Правильные направления векторов \vec{E} напряжённости электростатического поля, создаваемого отрицательным точечным зарядом -q, указаны на рисунке в точках, обозначенных цифрами:

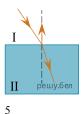



5) 5.


1) 1; 3) 3;


7. Плоский воздушный конденсатор подключён к источнику постоянного напряжения. График зависимости заряда *q* конденсатора от расстояния *d* между обкладками конденсатора представлен на рисунке, обозначенном цифрой:




1) 1;

3) 3;

5) 5.

8. Ход отражённого и преломлённого световых лучей при отражении и преломлении на границе раздела сред воздух (I) — вода (II) правильно показан на рисунке, обозначенном цифрой:

1) 1;

5) 5.

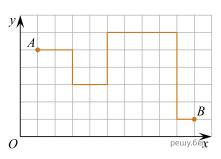
9. Если работа выхода фотоэлектрона с поверхности кадмия $A_{\rm Bыx}=4.1\cdot 10^{-19}$ Дж, то длина волны $\lambda_{\rm K}$, соответствующая красной границе фотоэффекта для этого металла, равна:

1) 410 HM;

2) 435 HM;

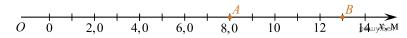
3) 460 нм;

4) 485 HM;

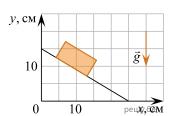

5) 510 нм.

10. Неизвестной частицей ${}^{A}_{Z}X$ в ядерной реакции ${}^{9}_{4}\mathrm{Be} + {}^{4}_{2}\mathrm{He} \to {}^{12}_{6}\mathrm{C} + {}^{A}_{Z}X$ является:

1) ${}_{2}^{4}\text{He};$ 2) ${}_{1}^{1}p;$ 3) ${}_{0}^{1}n;$ 4) ${}_{1}^{0}e;$ 5) ${}_{-1}^{0}e.$

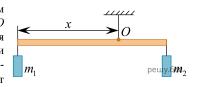

11. Тело переместилось из точки A в точку B по траектории, показанной на рисунке. Если проекция перемещения тела на ось Ox равна $\Delta r_x = 18$ м, то путь s, пройденный телом, равен ... м.

Примечание. Масштаб сетки по осям Ox и Oy одинаковый.



12. Кинематические законы движения двух материальных точек, движущихся вдоль оси Ox, имеют вид $x_1=A_1+B_1t$, $x_2=A_2+B_2t$, где $A_1=-30$ м, $B_1=27$ $\frac{\rm M}{\rm C}$, $A_2=22$ м, $B_2=-12$ $\frac{\rm M}{\rm C}$. Модуль скорости одной материальной точки относительно другой равен ... $\frac{\rm M}{\rm C}$.

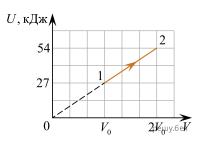
13. Бруску, находящемуся на шероховатой горизонтальной поверхности, ударом сообщили скорость \vec{v}_0 по направлению оси Ox. Если скорость бруска в точке A равна $\vec{v}_A = \frac{3 \, \vec{v}_0}{4}$, а в точке B скорость бруска $\vec{v}_B = \frac{\vec{v}_0}{2}$ (см. рис.), то точка, в которой брусок находился в момент удара, имеет координату x_0 , равную ... дм.


14. Брусок поместили на гладкую наклонную плоскость и отпустили без начальной скорости (см. рис.). После этого брусок начал двигаться с ускорением, проекция a_x которого на ось Ox равна ... $\frac{\mathcal{M}}{c^2}$.

15. Два тела массами $m_1=m$ и $m_2=2m$ двигались во взаимно перпендикулярных направлениях со скоростями, модули которых соответственно равны $\upsilon_1=20~\frac{\rm M}{\rm c},$ $\upsilon_2=15~\frac{\rm M}{\rm c}.$ Если после соударения тела начали двигаться как единое целое, то модуль их скорости υ после соударения равен ... $\frac{\rm M}{\rm c}.$

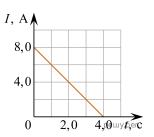
16. Груз массой m=0.80 кг, подвешенный на длинной невесомой нерастяжимой нити, отклонили так, что нить заняла горизонтальное положение, и отпустили без начальной скорости. В момент времени, когда нить составляла угол $\alpha=60^\circ$ с вертикалью, модуль силы $F_{\rm H}$ натяжения нити был равен ... H.

17. Однородный стержень длиной l=1,4 м и массой m=4,0 кг подвешен на нити в точке O и расположен горизонтально. К концам стержня на невесомых нитях подвешены два тела массами $m_1=2,0$ кг и $m_2=5,0$ кг (см. рис.). Если система находится в равновесии, то расстояние x от точки O до левого конца стержня равно ... см.


18. При изохорном нагревании идеального газа, количество вещества которого постоянно, температура газа увеличилась на $\Delta T=160~{
m K}$, а давление газа увеличилось в $k=1,\!50$ раза. Начальная температура T_1 газа была равна ... ${
m K}$.

19. В сосуде объёмом V=2,0 м³ при некоторой температуре t находится воздух, относительная влажность которого $\phi=75\%$. Если при температуре t плотность насыщенного водяного пара $\rho_{\rm HII}=22~\frac{\Gamma}{{
m M}^3}$, то масса m водяного пара в сосуде равна ... г.

20. Рабочее тело теплового двигателя за один цикл совершило работу $A=310~\rm Дж$. Если при этом холодильнику было передано количество теплоты $Q_{\rm X}=840~\rm Дж$, то термический коэффициент полезного действия теплового двигателя η равен ... %.


21. В теплоизолированном калориметре с пренебрежимо малой теплоёмкостью находится вода $\left(c_1=4200\ \frac{\text{Дж}}{\text{к}\Gamma\cdot{}^\circ\text{C}}\right)$ массой $m_1=750\ \text{г}$ при температуре $t_1=25\ {}^\circ\text{C}$. В калориметр добавляют лёд $\left(c_2=2100\ \frac{\text{Дж}}{\text{к}\Gamma\cdot{}^\circ\text{C}},\ \lambda=333\ \frac{\text{к}\text{Дж}}{\text{к}\Gamma}\right)$ массой $m_2=310\ \text{г}$, температура которого $t_2=-10\ {}^\circ\text{C}$. После установления теплового равновесия масса m льда в калориметре будет равна ... г.

22. Идеальный одноатомный газ перевели из состояния 1 в состояние 2 (см. рис.). При этом зависимость его внутренней энергии U от объёма V имела вид, представленный на рисунке. Если в ходе процесса 1—2 количество вещества газа оставалось постоянным, то газ получил количество теплоты Q равное ... кДж.

- **23.** Маленький заряженный шарик массой m=4,0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1=q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r=30 см, то модуль заряда каждого шарика равен ... нКл.
- **24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\phi = 30$ В, то модуль силы F электростатического взаимодействия между зарядами равен ... нН.
- **25.** Сила тока в резисторе сопротивлением R=16 Ом зависит от времени t по закону I(t)=B+Ct, где B=6,0 А, C=-0,50 $\frac{\mathrm{A}}{\mathrm{c}}$. В момент времени $t_1=10$ с тепловая мощность P, выделяемая в резисторе, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F_c}=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{H\cdot c}{M}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{M}{-}$.

28. На рисунке представлен график зависимости силы тока I в катушке индуктивностью $L=7.0~\Gamma$ н от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью $C=150\,$ мкФ и катушки индуктивностью $L=1,03\,$ Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\mathrm{tg}\,\beta}{\mathrm{tg}\,\alpha}=\frac{5}{2}$, то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.

8/8